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Abstract—To properly predict and determine which features
are critical for CO2 level prediction, this work proposes a
data collecting Intelligent IoT Platform that incorporates human
detection algorithms using YOLOv8 into a time-series data
collection, as well as a comprehensive analysis of the feature
selection for deep learning models prediction performance by
utilizing objective measurements such as MSE, RMSE, MAE,
MAPE, and R2. The results suggest that incorporating human
detection techniques into the deep learning model improves its
performance.

Index Terms—Deep Learning, Internet of Things, Indoor Air
Quality, Forecasting

I. INTRODUCTION

To properly maintain CO2 level, complete and accurate data
for monitoring motives would be required, thus monitoring for
CO2 level is a common practice. Nowadays, to take a further
step forward, a CO2 level prediction is being done in some
cases to prevent CO2 level from dropping too low.

Many studies has already covered predicting CO2 levels,
such as [1], found that by incorporating additional datasets,
the performance of the ARIMA prediction model can be
significantly improved. However, it is important to note that
their analysis was based on a limited dataset consisting of
temperature, humidity, and CO2 concentration measurements
collected throughout a single day with 10-second intervals.
Meanwhile [2] conducted a study on predicting using GRU and
LSTM models by utilizing a dataset consisting of CO2 con-
centration, fine dust, temperature, light quantity, and volatile
organic compounds. The dataset spanned three months, and the
results showed that the GRU model outperformed the LSTM
model. For [3] in their study utilize several sensor data such
as temperature, humidity, PIR, CO2, and air pressure, their
focuses were on doing a prediction for dataset generated from
their data collecting sensors. They generated a dataset for one-
year which was then made publicly accessible. From their
studies it is stated that machine learning is a valid approach
when using a multi-dimensional data for modeling building
behavior, and adjusting indoor conditions based on forecast
would support energy efficiency while simultaneously enhanc-
ing modern indoor spaces’ occupational health and well-being
properties. Furthermore, [4] address occupancy detection for
office rooms from light, temperature, humidity, and CO2 by

utilizing classification and regression tree, with their result
being a greater performance when using light sensor. For this
study, we are looking further into the features that would be
used for CO2 level prediction and determine which of the
features deemed important and unimportant. Mentioned by
[5] in their study, the utilization of edge server which would
act to lessen the cloud server’s workload and to prevent a
single point of failure to increase the platform reliability, we
are implementing this model in an edge device, on which the
computational power would be limited. Hypothetically, should
the feature had more correlation to the CO2, it would be better
not to exclude that. The main contributions of our work are
summarized as follows:

• Comparison of multiple features for predicting CO2 levels
in lightweight deep learning that would be implemented
for edge device.

• A human detection scheme in edge device to enhance
CO2 levels prediction.

The rest of this study is documented as follows: Section II
explains the methodology being used for this study. Section III
emphasize the result received. Section IV concludes the study
and future directions for this research.

II. METHODOLOGY

A. Data Collection and Human Detection Scheme

Fig. 1. Architecture Scheme

For data collection, we are utilizing an industrial CO2

sensors that could measures several data for IAQ. Which are
temperature, humidity, and CO2. This sensor communicate
through Modbus RTU communication protocol, an industrial
standard for communication protocol. The data collected from
this sensor would be sent to the edge server directly to be



stored and for further data processing. In this setup, we are
collecting the data for 25 hours and 45 minutes with one
second interval on which produces a total of 92700 data.

We are utilizing the YOLOv8 [6] algorithm, which is an
open-source effort in the field of computer vision, for the
purpose of human detection. Renowned for its exceptional
velocity and proficiency in conducting instantaneous object
identification [7]. In this scenario, it is crucial to have the
capability to do real-time human object identification in order
to accurately determine the number of individuals present at a
given timestamp. Once the program identifies humans, it will
then transmit data to the database in edge server at intervals of
1 second in order to compare it with data from other sensors.
Therefore, the data received would match between the human
detection and the sensor.

B. CO2 Level Prediction

For predictions, the size of the deep learning model is
important in this study as it would be implemented in an edge
environment on which the computational power is limited.
With lightweight in consideration, two of the basic types of
deep learning models were chosen, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU).

LSTM [8] is a specific iteration of RNN that was developed
to address the limitations of traditional RNNs in retaining
information over long periods of time. The LSTM possesses
a distinct architecture compared to RNN, which facilitates the
acquisition of long-term dependencies. In order to accomplish
that, LSTM utilizes memory units to preserve the cell state
throughout a given period. The equation is formulated as
follows:

it = σ(Wiixt + bii+Whih(t− 1) + bhi) (1)

ft = σ(Wifxt + bif +Whfh(t− 1) + bhf) (2)

ctu = tanh(Wicxt + bic+Whch(t− 1) + bhc) (3)

ct = ft · c(t− 1) + it · ctu (4)

ot = σ(Wioxt + bio+Whoh(t− 1) + bho) (5)

ht = ot · tanh(ct) (6)

On which it is an input gate, ft is the forget gate, ot is
the output gate, ctu is the cell state update, ct is the cell
state. W and b represents weight matrices and bias vectors,
meanwhile subscripts ii, if , io, ic, hi, hf , ho, and hc denotes
different weights and biases for input, forget, output, input
cell, hidden input, hidden forget, hidden output, and hidden
cell connections. σ represents tanh activation function.

The gated recurrent unit (GRU) network is a variation of
the long short-term memory (LSTM) network that has only
two gates: the reset gate and the update gate. zt represents the
update gate, rt represents the reset gate, htu for hidden state
update, and ht for the hidden state. The update gate decides
how much of the prior hidden state should be kept, while the
reset gate defines how much of the past information to forget.
The proposed update for the hidden state is the hidden state

update. The update gate controls the final hidden state, which
is a combination of the hidden state update and the previous
hidden state.

zt = σ(Wizxt + biz +Whzh(t− 1) + bhz (7)

rt = σ(Wicxt + bir +Whrh(t− 1) + bhr (8)

htu = σ(Wicxt + bic+ rt · (Whch(t− 1) + bhc)) (9)

C. Prediction Validation

For validation, an objective evaluation are being used for
every prediction made by each deep learning models. To
properly evaluate the performance the prediction to the actual
data. Five evaluation matrices are MSE, RMSE, MAE, MAPE,
and R2. Each of the matrices are represented as follows:

MSE =
1

n

N∑
i=1

(Yi − Ŷi)
2 (10)

RMSE =

√√√√ 1

n

N∑
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(Yi − Ŷi)2 (11)
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R2 = 1−
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i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(14)

III. IMPLEMENTATION RESULTS

From the data collection, a total of 370800 data point was
received. On which it consist of temperature, humidity, CO2,
and human detection data each consist of 92700 data point.
The data match the data collection duration which is 25 hours
and 45 minutes with 1 second interval. After receiving the data,
a correlation coefficient for feature selection is being done. On
which from Fig. 2 we can see that humidity has the highest
correlation to CO2 with 0.94, meanwhile human detection is
lower with 0.77. Based on this correlation coefficient, we are
making 4 scenarios: to do a prediction with all features to
see how well the model would perform with every feature
included, then a prediction without human detection feature
to see the model performance without this feature, prediction
without temperature feature because based from coefficient
correlation it has the lowest value, and the last scenario
is to predict without temperature and humidity to see how
significant human detection feature is for CO2 level prediction.

This study utilizes TensorFlow2.10 and Python3.10 to con-
duct the experiment for the prediction. The prediction is set
for 300 seconds or five minutes, the prediction validation is
being done by measuring MSE, MAE, MAPE, RMSE, and R2

which can be seen at Table 1.
For Table 1, Fig. 3, and Fig. 4, an additional suffixes of ”-

P” means without the human detection feature, ”-T” without



Fig. 2. Correlation Coefficient

TABLE I
PREDICTION VALIDATION VALUE

Model MSE MAE MAPE RMSE R2

GRU 7.6825 2.1690 0.0088 2.7717 0.7061
GRU-P 9.6177 2.5021 0.0102 3.1012 0.6076
GRU-T 6.7075 2.0144 0.0082 2.5899 0.7281

GRU-TH 6.4668 1.9660 0.0080 2.5430 0.7207
LSTM 18.9362 3.7634 0.0154 4.3516 0.2625

LSTM-P 6.3213 2.0073 0.0082 2.5142 0.7907
LSTM-T 6.3102 1.9719 0.0080 2.5120 0.7678

LSTM-TH 4.8767 1.7279 0.0070 2.2083 0.8081

the temperature feature, and ”T-H” without temperature and
humidity feature. As the result suggest, almost all of the
scenarios and models has a good performance based on the
visualized data. Meanwhile LSTM without temperature and
humidity feature has the best performance when compared
with the other scenarios, it has the lowest value for MSE,
MAE, MAPE, and RMSE, meanwhile the R2 value is the
closest to 1.

Fig. 3. Data Plot Visualization

TABLE II
MODEL AND PARAMETER SIZE

Model Parameter Size Model Size Time Elapsed
GRU 19861 237 kB 0.0088

GRU-P 19771 235 kB 0.0102
GRU-T 19771 236 kB 0.0082

GRU-TH 19681 235 kB 0.0080
LSTM 26101 311 kB 0.0154

LSTM-P 25981 310 kB 0.0082
LSTM-T 25981 309 kB 0.0080

LSTM-TH 25861 308 kB 0.0070

IV. CONCLUSION

This human detection feature is playing a significant role
for improving the CO2 level prediction, even though the
correlation coefficient shows that human detection feature has
a lower score than humidity, the prediction results shows the
opposite. Based on Table 1, when comparing ”GRU” and
”GRU-P” it can be seen that GRU has a better performance
when including human detection feature, aside from that
when removing humidity feature from the prediction, the
performance got better in GRU and LSTM. On Fig. 4, it is a

Fig. 4. Localized Data Plot Visualization

localized visualization for data on point 110 to 125 to give
a further clear view of how the prediction performs when
compared to ground truth. This shows that all models have
a decent performance as it could roughly follows the ground
truth pattern and managed to stay within below 10 ppm of
error margin. All of the models could do a prediction in under
one second, and the parameter size of both GRU and LSTM is
not that high based on Table 2, GRU have a lower parameter
size, model size, and time needed to run the model. For future
works of this study, we can explore more to the state-of-the-art
lightweight model and do a comparison with its former model.
For the human detection algorithm scheme it could be applied
for CO2 level prediction as it shows a significant impact in
this study.
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