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Abstract—Electric motors are common devices widely used 

in the industrial sector, making the study of motor fault 

diagnosis highly representative. In particular, for rail grinding 

vehicles, which play a significant role in the preventive 

maintenance and periodic upkeep of railway tracks, ensuring 

optimal train operation is of paramount importance. However, 

due to harsh operating conditions, the grinding motors on rail 

grinding vehicles frequently experience failures. Typically, 

these motors are periodically inspected and repaired by 

railway workers, which often leads to delayed handling of 

faulty motors, thereby compromising the efficiency of rail 

grinding operations and increasing the maintenance costs 

associated with motor repairs. Consequently, there is a need to 

investigate a fault diagnosis model for grinding motors and 

establish a system for remote fault diagnosis of these motors. 

To address this issue, the first step involves analyzing the 

maintenance records of grinding motors to identify common 

failure locations and types, and subsequently collecting 

corresponding vibration data. Next, a fault diagnosis model is 

developed based on the specific failure characteristics of 

grinding motors. This model is trained and optimized using a 

data set of vibration data from grinding motors to determine a 

suitable fault diagnosis model for this specific application. 

Finally, the developed fault diagnosis model for grinding 

motors is applied to diagnose faults in these motors, thereby 

validating the practical effectiveness of the model. By 

conducting this research, it is anticipated that a comprehensive 

understanding of the fault diagnosis process for grinding 

motors can be achieved, leading to the implementation of a 

remote fault diagnosis system for these motors. Ultimately, this 

will contribute to improved operational efficiency and reduced 

maintenance costs in rail grinding operations. 
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neural network, motor, vibration signal 

 

I. INTRODUCTION 

In recent years, the high-speed rail network in China has 
experienced rapid growth, reaching a total length of 42,000 
kilometers by 2022. Consequently, various issues such as rail 
edge wear, uneven profile grinding, contact damage, poor 
joint and weld flatness, and lateral grinding have become 
more prevalent, significantly impacting the safety and 

stability of railway operations. To address these challenges, 
rail grinding vehicles are frequently employed for 
maintenance and upkeep of the railway tracks. Among the 
crucial components of these vehicles, grinding motors play a 
pivotal role. These motors drive the rotation of the grinding 
wheel, which corrects irregular wear patterns, wheel-rail 
contact damage, rectifies yaw deviations, and eliminates 
defects on the contact surface between the wheel and rail, as 
shown in Figure 1 and Figure 2. 

 

Fig. 1. rail grinding vehicle  

 

Fig. 2. Rail grinding motor 

However, the environment in which rail grinding takes 
place is often harsh, susceptible to factors such as windblown 
debris, rain, snow, extreme heat, and severe cold. 
Furthermore, the grinding process generates a substantial 
amount of iron filings that can enter the motor and cause 
malfunctions. Additionally, the high power, temperature, 
speed, and heavy load characteristics of the grinding motors 
make them prone to failures. These factors collectively 
contribute to a high failure rate of grinding motors, 



significantly impacting the quality and efficiency of the rail 
grinding process. 

The faults of grinding motors can be categorized into 
mechanical faults and electrical faults, commonly including 
short circuits, abnormal grounding, bearing damage, and 
unbalanced shaft systems. In the event of a grinding motor 
failure during grinding operations, the maintenance of the 
track cannot continue, often requiring disassembly and 
returning to the factory for repairs. This poses challenges 
such as the inconvenience of disassembly and installation, 
high repair costs, and long repair cycles. Therefore, there is 
an urgent need for an online fault diagnosis method and 
system for grinding motor faults diagnosis. 

Intelligent fault diagnosis of grinding motors [1][2] is an 
important means of motor fault diagnosis to improve motor 
reliability and reduce maintenance costs, and is being valued 
by more and more scholars. Therefore, this article conducts 
efficient, accurate, and intelligent fault diagnosis of the 
grinding motor to effectively reduce the maintenance cost of 
the grinding motor and improve the grinding quality and 
efficiency of the track. 

II. RELATED WORKS 

In recent years, there has been rapid development in the 
field of artificial intelligence (AI) technology. Algorithms 
such as encoder-decoder, transformer, and GPT have 
gradually improved and been applied, bringing new 
advancements to fault diagnosis techniques. Various deep 
learning models[3][4], including convolutional neural 
networks[5], stacked autoencoder[6], and deep belief 
networks[7], have already been employed in mechanical 
fault diagnosis [8]. 

Saidi et al. [9] proposed a vibration-based fault diagnosis 
and prediction method for high-speed shaft bearings (HSSB) 
in wind turbines, utilizing a data-driven approach based on 
spectral kurtosis (SK). The superiority of degradation 
evaluation indicators derived from SK was demonstrated 
through the training and testing of a support vector 
regression (SVR) model for predicting the lifespan of HSS. 

Saravanan et al. [10] employed discrete wavelet 
transform for feature extraction to represent all possible 
transient types occurring in the vibration signals generated 
by gearboxes. The features extracted through wavelet 
transform were then fed into a neural network to handle the 
vibration signals of gearboxes under different conditions, 
achieving fault classification for the gearboxes. 

Gang et al. [11] proposed a novel method for gear fault 
recognition based on the Hilbert-Huang Transform (HHT) 
and Self-Organizing Map (SOM) neural network. Firstly, the 
frequency series of gear vibration signals were effectively 
separated using Empirical Mode Decomposition (EMD). 
Then, the Hilbert spectrum and Hilbert marginal spectrum 
were obtained by performing Hilbert transform on the 
Intrinsic Mode Functions (IMFs). These spectra displayed 
the amplitude variations of the gear vibration signals with 
respect to time and frequency. After HHT, the energy 
percentage of the first six IMFs was selected as the input 
vector for the SOM neural network, enabling the 
classification of gearbox faults. 

From these studies, it is evident that the application of AI 
in fault diagnosis has become a research hotspot and an 
important direction for the advancement of fault diagnosis 

techniques. The integration of intelligent diagnostic methods, 
remote fault diagnosis technologies, intelligent sensor 
networks, and intelligent warning decision-making systems 
will be the future trend in the development of mechanical 
fault diagnosis techniques [12][13]. 

 

III. PROPOSED METHOD 

Common types of faults in grinding motors include 
electrical faults such as rotor winding faults, stator winding 
faults, and air gap eccentricity faults, as well as mechanical 
faults such as rolling bearing faults, rotor unbalance faults, 
and faults caused by poor installation and commissioning. To 
identify these faults through algorithm models, data 
collection of the grinding motor is necessary. The commonly 
used data types include vibration signals, temperature 
signals, and electrical signals.  

Among them, vibration signal is the most commonly 
used fault signal. Before the motor completely fails, whether 
it is a mechanical fault or an electrical fault, the vibration 
signal will be different from the normal situation. Therefore, 
it is widely used in fault diagnosis. For example: fault 
diagnosis is performed by analyzing the time domain 
characteristics and frequency domain characteristics of 
vibration signals [14][15]. The temperature signal can also 
reflect the operating status of the motor, because many motor 
faults are caused by overheating and burning of the 
insulation layer. Such faults usually cause temperature 
abnormalities. Current and voltage signals are usually used 
for diagnosis of electrical fault types. For example, when a 
winding failure occurs, the current and voltage of the motor 
will be unbalanced. 

In this study, the most representative vibration data was 
selected as the research basis for the fault diagnosis model. 
To collect the motor fault data, as shown in Figure 3, 
vibration signals in the axial and radial directions near the 
bearing were acquired using two single-axis acceleration 
vibration sensors. In this study, vibration signals were 
collected from a total of 37 grinding motors, including 20 
normal motors and 17 faulty motors, forming a data set of 
vibration signals. 

 

Fig. 3. Grinding Motor Data Collection 

 This paper presents an algorithm model for fault 
diagnosis based on convolutional neural networks (CNN). 
The structure of the model is illustrated in Figure 4. CNN 
models are commonly used for image recognition and 
classification, where convolutional and pooling layers are 
typically designed as two-dimensional modules. However, in 
the case of grinding motor vibration data, which is a one-
dimensional acceleration signal, the two-dimensional 
modules in the model need to be transformed into one-
dimensional modules. Furthermore, since vibration data is 



less complex than images, the number of layers in the 
original model is reduced to simplify the model and prevent 
overfitting during training, thus accelerating the training 
process. 

 

Fig. 4. Model Structure 

The original data is initially encoded by a three-layer 
encoder composed of convolutional layers, resulting in a 
transformation from 2x1024 to 64x22. The output of the 
encoder is then flattened into a one-dimensional vector after 
passing through a Flatten layer. Subsequently, a fully 
connected layer is applied to produce a one-dimensional 
vector of 64 data. The output is further processed through 
Linear and Reshape operations, followed by three transpose 
convolutional layers in the decoder to generate the output 
while maintaining the same data structure as the input.  

Next, the output data passes through a convolutional 
layer, followed by BatchNorm1d layer for batch 
normalization. After applying the ReLU activation function, 
the data undergoes feature compression through a max 
pooling layer. It then proceeds through a dense layer, which 
consists of four convolutional layers with dense connections. 
A transition layer is introduced to reduce the number of 
channels, comprising BatchNorm1d layer, a 1x1 
convolutional kernel, and an average pooling layer. 
Subsequently, the data passes through another dense layer 
with the same structure before being outputted. The output is 
subjected to BatchNorm1d layer, ReLU activation function, 
and adaptive average pooling layer, and then flattened. 
Finally, the data is inputted into a Softmax classifier for 
classification. The key parameters of the model are listed in 
Table 1. 

TABLE I.  KEY PARAMETERS OF MODEL 

Layer Parameters 

Conv1d 

Input channel number is 2, output channel 

number is 16, Convolution kernel size is 22, 
stride is 6, padding is 6, activation function is 

ReLU 

Conv1d 

Input channel number is 16, output channel 

number is 32, Convolution kernel size is 10, 
stride is 4, padding is 4, activation function is 

ReLU 

Conv1d 

Input channel number is 32, output channel 
number is 64, Convolution kernel size is 5, 

stride is 2, padding is 2, activation function is 

ReLU 

Flatten 64×22→1408 

Linear 
Input 1408, Output 64, activation function is 
ReLU 

Linear 
Input 64, Output 1408, activation function is 

ReLU 

Reshape 1408→64×22 

Layer Parameters 

ConvTranspose1d 

Input channel number is 64, output channel 

number is 32, Convolution kernel size is 5, 
stride is 2, padding is 2, activation function is 

ReLU 

ConvTranspose1d 

Input channel number is 32, output channel 

number is 16, Convolution kernel size is 10, 
stride is 4, padding is 4, activation function is 

ReLU 

ConvTranspose1d 

Input channel number is 16, output channel 
number is 2, Convolution kernel size is 20, 

stride is 6, padding is 6, activation function is 

ReLU 

Conv1d 

Input channel number is 2, output channel 

number is 64, Convolution kernel size is 7, 

stride is 2, padding is 3, activation function is 
ReLU 

MaxPool1d 
Convolution kernel size is 3, stride is 2, padding 

is 1 

Dense Layer 

The number of convolutional layers is 64, the 

number of input channels is 192, and the 

number of output channels is 64 

Transition Layer 
the number of input channels is 192, and the 
number of output channels is 96 

Dense Layer 

The number of convolutional layers is 4, the 

number of input channels is 96, and the number 
of output channels is 224 

Softmax Input 224, Output 2 

 

 In addition, in practical applications of grinding motor 
fault diagnosis, it is often encountered that fault categories 
not previously present in the old data set emerge. This 
situation can significantly impact the actual effectiveness of 
the model. Therefore, this study addresses this issue by 
expanding the output categories of the last Softmax layer, 
thereby reserving classification positions for future new fault 
categories and providing identification for new fault types. If 
the model encounters new fault categories during the 
engineering application process, the new fault categories are 
labeled with new identification markers in the data set. The 
model is then updated through transfer learning, thereby 
achieving automatic expansion of fault categories in the 
grinding motor fault diagnosis model. 

 

IV. EXPERIMENTAL STUDY 

To validate the effectiveness of the proposed model, 
vibration data was collected from 37 grinding motors with 
12K sampling rate, comprising 20 functioning motors and 17 
faulty motors. Each motor was sampled 100 times, each 
sample consists of two orthogonal vibration arrays, forming 
two channels data. Each channel consisted of 1024 data 
points. The waveform of data set is as Figure 5. The data set 
was divided into training and testing sets, using a ratio of 3:1, 
and utilized for model training.  

 

Fig. 5. Data Set Example 



Additionally, Lenet [16], VGG [17], and ResNet [18] 
were selected as comparative models and trained using the 
same data set. The training loss functions of all models 
employed the cross-entropy loss function, and a total of 50 
epochs were conducted. The results are illustrated in Figure 
5. For the purpose of identification and distinction, the 
proposed model in this paper is referred to as DAENet. 

 

Fig. 6. Training results 

TABLE II.  TRAINING ACCURACY AND TEST ACCURACY 

Model Training Accuracy Test Accuracy 

Lenet 0.969231 0.933846 

VGG 0.968301 0.962037 

ResNet 0.994872 0.987692 

DAENet 0.998974 0.988769 

As Figure 6, the training of the Lenet, VGG, ResNet, and 
the proposed DAENet model all reached a convergent state, 
with the loss reduced to below 0.1. The final training 
accuracy and testing accuracy are presented in Table 2. By 
comparing the results, it is evident that both the ResNet 
model and the proposed DAENet model exhibit fault 
classification accuracy exceeding 99% on both the training 
and testing data sets, surpassing the accuracy of Lenet and 
VGG models. Furthermore, the proposed DAENet model 
demonstrates a faster convergence rate. 

 
Fig. 7. Training results for different Softmax output 

TABLE III.  ACCURACY FOR DIFFERENT SOFTMAX OUTPUT 

Model Training Accuracy Test Accuracy 

16 0.997949 0.996923 

32 0.997828 0.996713 

64 0.999487 0.997924 

128 0.998462 0.996923 

In order to verify whether reserving multiple output 
bits for the Softmax layer will affect the model, the output 
of the Softmax layer was set to 16, 32, 64, and 128 
respectively, and training and verification was performed 
on the original grinding motor vibration data set. Finally 
we got the training results are shown in Figure 7, and the 
respective training and testing accuracy are shown in 
Table 3.  

From the training results and training accuracy, It can be 
seen that this strategy has basically no impact on the 
classification performance of the fault diagnosis model. 

In order to validate the effectiveness of this algorithm in 
diagnosing motor faults across different motor types and 
batches, motor data from two different models and three 
maintenance batches were selected for model performance 
verification. The results are presented in the following table: 

TABLE IV.  ACCURACY FOR DIFFERENT MOTOR TYPES 

Motor Type Specification Repair Date Test Accuracy 

HTT 256TY 2016.01 0.997632 

HTT 256TY 2020.11 0.996934 

SPENO SSM132L/2 2017.11 0.997891 

 

V. CONCLUSIONS 

This study proposes a novel fault diagnosis model for 
grinding motors based on their characteristic failure patterns. 
To this end, a dedicated vibration signal acquisition system 
was designed and utilized to collect data from 20 functioning 
motors and 17 faulty motors. The collected data was 
carefully organized and employed for training the proposed 
fault diagnosis model. 

The fault diagnosis model undergoes preprocessing steps, 
including data denoising and dimension reduction, using the 
principles of convolutional neural networks. Subsequently, 
the model performs fault classification and identification 
based on the processed vibration signal data. 

To evaluate the performance of the proposed model, real-
world collected data was utilized for training, and a 
comparative analysis was conducted against different 
convolutional neural network models, including Lenet, 
VGG, and ResNet, using the same data set of vibration data 
from grinding motors. 

The results of the comparative analysis demonstrate that 
the proposed fault diagnosis model for grinding motors 
achieves an accuracy exceeding 99%, indicating a 
significantly higher precision in fault recognition compared 
to Lenet and VGG models, and slightly higher precision  
compared to ResNet. These findings highlight the advantages 
and superiority of the developed model in the domain of fault 
diagnosis for grinding motors. 



Overall, this algorithm model, based on the modified 
CNN architecture, effectively addresses the challenge of 
fault diagnosis using vibration data, providing a more 
accurate and efficient approach for fault detection and 
classification. 
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